Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: covidwho-2299889

ABSTRACT

The virus-host interaction is dynamic and evolutionary. Viruses have to fight with hosts to establish successful infection. Eukaryotic hosts are equipped with multiple defenses against incoming viruses. One of the host antiviral defenses is the nonsense-mediated mRNA decay (NMD), an evolutionarily conserved mechanism for RNA quality control in eukaryotic cells. NMD ensures the accuracy of mRNA translation by removing the abnormal mRNAs harboring pre-matured stop codons. Many RNA viruses have a genome that contains internal stop codon(s) (iTC). Akin to the premature termination codon in aberrant RNA transcripts, the presence of iTC would activate NMD to degrade iTC-containing viral genomes. A couple of viruses have been reported to be sensitive to the NMD-mediated antiviral defense, while some viruses have evolved with specific cis-acting RNA features or trans-acting viral proteins to overcome or escape from NMD. Recently, increasing light has been shed on the NMD-virus interaction. This review summarizes the current scenario of NMD-mediated viral RNA degradation and classifies various molecular means by which viruses compromise the NMD-mediated antiviral defense for better infection in their hosts.


Subject(s)
Nonsense Mediated mRNA Decay , RNA Viruses , RNA Viruses/genetics , Protein Biosynthesis , Codon, Terminator , Antiviral Agents
2.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2225327

ABSTRACT

Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (DHX34), suppressor with morphogenetic effect on genitalia 5 (SMG5), and SMG7 expression at 6 h post-infection, followed by a significant increase of these genes and also UPF1 and UPF2 at 9 h post-infection. Conversely, NBAS and other genes coding for NMD factors were not modulated. Known NMD substrates related to cell stress (Growth Arrest Specific 5, GAS5; transducin beta-like 2, TBL2; and DNA damage-inducible transcript 3, DDIT3) were increased in infected cells, possibly as a result of alterations in the NMD pathway and of a direct effect of the infection. We also found that the expression of unconventional SNARE in the ER 1, USE1 (p31) and Zeste White 10 homolog, ZW10, partners of NBAS in the retrograde transport function, significantly increased over time in infected cells. Co-localization of NBAS and UPF1 proteins did not change within 24 h of infection nor did it differ in infected versus non-infected cells at 1 and 24 h after infection; similarly, the co-localization of NBAS and p31 proteins was not altered by infection in this short time frame. Finally, both NBAS and UPF1 were found to co-localize with SARS-CoV-2 S and N proteins. Overall, these data are preliminary evidence of an interaction between NBAS and NBAS-related functions and SARS-CoV-2 in infected cells, deserving further investigation.


Subject(s)
COVID-19 , Neuroblastoma , Humans , RNA Helicases/genetics , RNA Helicases/metabolism , COVID-19/genetics , SARS-CoV-2/metabolism , Nonsense Mediated mRNA Decay , Trans-Activators/metabolism , Carrier Proteins/metabolism
3.
RNA ; 26(11): 1509-1518, 2020 11.
Article in English | MEDLINE | ID: covidwho-662475

ABSTRACT

Viruses have evolved in tandem with the organisms that they infect. Afflictions of the plant and animal kingdoms with viral infections have forced the host organism to evolve new or exploit existing systems to develop the countermeasures needed to offset viral insults. As one example, nonsense-mediated mRNA decay, a cellular quality-control mechanism ensuring the translational fidelity of mRNA transcripts, has been used to restrict virus replication in both plants and animals. In response, viruses have developed a slew of means to disrupt or become insensitive to NMD, providing researchers with potential new reagents that can be used to more fully understand the NMD mechanism.


Subject(s)
Host-Pathogen Interactions , Nonsense Mediated mRNA Decay , Viruses/metabolism , Animals , Humans , Plants/virology , Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Viral Proteins/genetics , Virus Physiological Phenomena , Viruses/classification , Viruses/genetics , Viruses/growth & development
4.
Wiley Interdiscip Rev RNA ; 11(5): e1614, 2020 09.
Article in English | MEDLINE | ID: covidwho-637124

ABSTRACT

Coronaviruses, including SARS-Cov-2, are RNA-based pathogens that interface with a large variety of RNA-related cellular processes during infection. These processes include capping, polyadenylation, localization, RNA stability, translation, and regulation by RNA binding proteins or noncoding RNA effectors. The goal of this article is to provide an in-depth perspective on the current state of knowledge of how various coronaviruses interact with, usurp, and/or avoid aspects of these cellular RNA biology machineries. A thorough understanding of how coronaviruses interact with RNA-related posttranscriptional processes in the cell should allow for new insights into aspects of viral pathogenesis as well as identify new potential avenues for the development of anti-coronaviral therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Subject(s)
Betacoronavirus/genetics , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Animals , Betacoronavirus/metabolism , Humans , MicroRNAs/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Nonsense Mediated mRNA Decay , Polyadenylation , Protein Biosynthesis , RNA Editing , RNA Splicing , RNA Stability , RNA, Circular/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL